不是标准矩阵怎么算行列式值
0矩阵的行列式等于多少?
0矩阵的行列式等于多少?
如果是方阵的话,行列式为0;如果不是方阵,根本不存在行列式。
行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。
无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
知道特征值怎么求行列式?
特征值乘积等于对应方阵行列式的值,特征值的和等于对应方阵对角线元素之和。
1、矩阵特征值性质若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。
2、矩阵是一个数阵,n阶矩阵的行列式是n*n的矩阵通过一种运算求出的值,这个值的几何含义是n维向量张成的体积,例如n2时代表面积,n3是代表体积等等,这是直观的含义。利用行列式可以判断一次方程有没有非零解,行列式只有到了高维的时候显得很有用。而高维行列式又很难算,一般用电脑算,作为高中生肯定不需要掌握。
3、在线性代数,行列式是一个函数,其定义域为的矩阵a,值域为一个标量,写作det(a)。在本质上,行列式描述的是在n维空间中,一个线性变换所形成的平行多面体的体积。行列式无论是在微积分学中(比如说换元积分法中),还是在线性代数中都有重要应用。
行列式与矩阵的区别与联系?
1、行列式的实质是一个数字,而矩阵是若干个数字的一种表现形式,2者有这天然的区别;
2、两者又不是完全没有联系。行列式的行和列的个数相等,而矩阵的行和列的个数可以相等也可以不相等。如果矩阵的行和列不相等,那么行列式和矩阵之间顶多只有半毛钱关系,大部分情况下一毛钱关系都没有。只有当矩阵的行和列相等时,行列式和矩阵的关系才变得多了起来,有五毛钱关系吧,呵呵。
3、当矩阵的行和列相等时,它的行列式能体现出这个矩阵的一些性质。例如,一个矩阵如果有逆矩阵的话,那么它的行列式形式就≠0;这也等价于这个矩阵的秩刚好等于矩阵的阶数。
4、当矩阵多行和列不相等时,一般情况下,在求解方程组的解时候他们之间才会有关联。即当矩阵的列数比行数多1时,可以看成一个线性方程组系数和方程的值构成了系数增广矩阵。例如有一个4×5的矩阵,可以看成是4×4阶矩阵外加一个4×1阶矩阵的增广矩阵。其中这个4×4阶部分,如果它的行列式形式的值≠0,且那个4×1阶部分为非零,那么这个线性方程组是有唯一解的。如果这个4×4阶部分,如果它的行列式形式的值≠0,且那个4×1阶部分为0矩阵,那么这个线性方程组是有有唯一的0解。如果这个4×4阶部分,如果它的行列式形式的值0,且那个4×1阶部分为0矩阵,那么这个线性方程组是有无穷解的。