求极限时等价无穷小的使用条件 ln的等价无穷小有什么?

[更新]
·
·
分类:行业
4766 阅读

求极限时等价无穷小的使用条件

ln的等价无穷小有什么?

ln的等价无穷小有什么?

lnx的等价无穷小是1
具体回答如下:
当x-0时,ln(1 x)~x
lim(x-0) ln(1 x)/x
lim(x-0) ln[(1 x)^(1/x)]
根据两个重要极限之一,lim(x-0) (1 x)^(1/x)e,得:
lne
1
求极限时,使用等价无穷小的条件 :
1、被代换的量,在取极限的时候极限值为0;
2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

高等数学利用等价无穷小求极限时,遇到加减的情况,怎么用?

什么时候可以用,什么时候不可以用等价无穷小替换

等价无穷小必须是所求极限式子得整体的乘除因子才行 你把5 2/x都提出来了 最后所得的除法不是整体的乘除因子 所以不行 第二题可以 我先说下等价无穷小在加减能用的条件 是由泰勒公式得到的 e^(x^2-2x)1 x^2-2x o(x^2)这是泰勒公式分解出的 带入和你的等价无穷小替换的相同 所以碰到加减直接用泰勒公式 用等价无穷小太容易错了

极限基本公式的适用条件?

1、第二重要极限公式使用条件是底为1加上无穷小量,而指数应为底中无穷小的倒数。
2、极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。极限的概念最终由柯西和魏尔斯特拉斯等人严格阐述。在现代的数学分析教科书中,几乎所有基本概念(连续、微分、积分)都是建立在极限概念的基础之上。
3、极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。所谓极限的思想,是指“用极限概念分析问题和解决问题的一种数学思想”。对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的影响趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。

等价无穷小替换公式记忆口诀?

等价无穷小
替换公式如下:
1、sinx~x
2、tanx~x
3、arcsinx~x
4、arctanx~x
5、1-cosx~(1/2)*(x^2)~secx-1
等价无穷小是无穷小之间的一种关系,指的是在同一自变量
的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。
求极限时使用等价无穷小的条件:
1、被代换的量,在去极限的时候极限值为0。
2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
无穷小比阶:
高低阶无穷小量:lim(x趋近于x0)f(x)/g(x)0,则称当x趋近于x0时,f为g的高阶无穷小量,或称g为f的低阶无穷小量。
同阶无穷小量:lim(x趋近于x0)f(x)/g(x)c(c不等于0),?和ɡ为x趋近于x0时的同阶无穷小量。
等价无穷小量:lim(x趋近于x0)f(x)/g(x)1,则称?和ɡ是当x趋近于x0时的等价无穷小量,记做f(x)~g(x)[x趋近于x0]。