为什么重心把中线分为2比1
等边三角形重心定理?
等边三角形重心定理?
三角形的中心:仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,这个心是三角形的中心。
三角形重心:三角形三条中线的交点即为三角形重心。
三角形的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离平方的和最小。 (等边三角形)
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数.
5、三角形内到三边距离之积最大的点。
6、在△ABC中,若MA向量 MB向量 MC向量0(向量) ,则M点为△ABC的重心,反之也成立。
7、设△ABC重心为G点,所在平面有一点O,则向量OG1/3(向量OA 向量OB 向量OC)。
扩展资料
五心、四圆、三点、一线:这些是三角形的全部特殊点,以及基于这些特殊点的相关几何图形。“五心”指重心、垂心、内心、外心和旁心;“四圆”为内切圆、外接圆、旁切圆和欧拉圆;“三点”是勒莫恩点、奈格尔点和欧拉点;“一线”即欧拉线。
三角形的五心定理 :
①重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。该点叫做三角形的重心。
②外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。
③垂心定理:三角形的三条高交于一点。该点叫做三角形的垂心。
④内心定理:三角形的三内角平分线交于一点。该点叫做三角形的内心。
⑤旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点。该点叫做三角形的旁心。三角形有三个旁心。
三角形的重心、外心、垂心、内心、旁心称为三角形的五心。它们都是三角形的重要相关点。
为什三角形中线被垂心分割成1:2的比例关系?
重心是三边中线交点垂心是三边垂线交点把三角形中线分成2:1的是重心
垂心把高分为2:1,适用于哪些三角形,那段是2,哪段是1?
适用于等边三角形。
因为,任意三角形的重心将中线分为2:1; 等边三角形三心合一。到顶点与到对边长度之比是2:1