减函数增函数的定义及图像特征
幂函数要怎么看出增减函数?
幂函数要怎么看出增减函数?
建议你把幂函数的图象画一下。通常研究幂函数的增减都在第一象限内。当a大于0,函数在第一象限内是增函数。当a等于0,y等于x的0次方,即y1,它在第一象限是常函数。当a小于0,函数在第一象限是减函数。注意:幂函数的增减只与a有关,而与x无关。
函数增减性判断口诀?
设函数yf(u)的定义域为Du,值域为Mu,函数ug(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠?,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数,记为:yf[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。
复合函数定义域:若函数yf(u)的定义域是Df,ug(x)的定义域是Dg,则复合函数yf[g(x)]的定义域Dy(Df?Dg),即取两个函数定义域的交集。
复合函数增减性:根据yf(u),ug(x)的单调性决定。即“增增得增,减减得增,增减得减”,可以简化为“同增异减”。
怎样判断函数的增减性?
函数单调性的判断方法有导数法、定义法、性质法和复合函数同增异减法。
1、导数法 首先对函数进行求导,令导函数等于零,得X值,判断X与导函数的关系,当导函数大于零时是增函数,小于零是减函数。
2、定义法 设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数.
3、性质法 若函数f(x)、g(x)在区间B上具有单调性,则在区间B上有: ⑴ f(x)与f(x)+C(C为常数)具有相同的单调性; ⑵ f(x)与c?f(x)当c>0具有相同的单调性,当c<0具有相反的单调性; ⑶当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; ⑷当f(x)、g(x)都是增(减)函数,则f(x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;
4、复合函数同增异减法 对于复合函数y=f [g(x)]满足“同增异减”法(应注意内层函数的值域),可令 t=g(x),则三个函数 y=f(t)、t=g(x)、y=f [g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数。 拓展资料: 1、奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性; 2、互为反函数的两个函数有相同的单调性; 3、如果f(x)在区间D上是增(减)函数,那么f(x)在D的任一子区间上也是增(减)函数.