矩阵的范数怎么计算
两向量相乘的范数?
两向量相乘的范数?
向量范数
定义1. 设 ,满足
1. 正定性:║x║≥0,║x║0 iff x0
2. 齐次性:║cx║│c│║x║,
3. 三角不等式:║x y║≤║x║ ║y║
则称Cn中定义了向量范数,║x║为向量x的范数.
可见向量范数是向量的一种具有特殊性质的实值函数.
常用向量范数有,令x( x1,x2,…,xn)T
1-范数:║x║1│x1│ │x2│ … │xn│
2-范数:║x║2(│x1│2 │x2│2 … │xn│2)^1/2
∞-范数:║x║∞max(│x1│,│x2│,…,│xn│)
易得 ║x║∞≤║x║2≤║x║1≤n1/2║x║2≤n║x║∞
定理中任意两种向量范数║x║α,║x║β是等价的,即有m,Mgt0使
m║x║α≤║x║β≤M║x║
可根据范数的连续性来证明它.由定理1可得
定理2.设{x(k)}是Cn中向量序列,x是Cn中向量,则
║x(k)-x║→0(k→∞) iff xj(k)-xj→0,j1,2,…,n(k→
∞)
其中xj(k)是x(k)的第j个分量,xj是x的第j个分量.此时称{x(k)}收敛于x,记作x(k)
→x(k→∞),或 .
三、 矩阵范数
定义2. 设 ,满足
1. 正定性:║X║≥0,║X║0 iff X0
2. 齐次性:║cX║│c│║X║,
3. 三角不等式:║X Y║≤║X║ ║Y║
4. 相容性: ║XY║≤║X║║Y║
则称Cn×n中定义了矩阵范数,║X║为矩阵X的范数.
注意, 矩阵X可视为n2维向量,故有前三条性质.因此定理1,2中向量的等价性和向量
序列收敛的概念与性质等也适合于矩阵.第四条,是考虑到矩阵乘法关系而设.更有矩
阵向量乘使我们定义矩阵范数向量范数的相容性:
║Ax║≤║A║║x║
所谓由向量范数诱导出的矩阵范数与该向量范数就是相容的.
定理3. 设A是n×n矩阵,║?║是n维向量范数则
║A║max{║Ax║:║x║1} max{║Ax║/║x║: x≠0}
是一种矩阵范数,称为由该向量范数诱导出的矩阵范数或算子范数,它们具有相容性
或者说是相容的.
单位矩阵的算子范数为1
可以证明任一种矩阵范数总有与之相容的向量范数.例如定义:
║x║║X║,X(xx…x)
常用的三种向量范数诱导出的矩阵范数是
1-范数:║A║1 max{║Ax║1:║x║11}
2-范数:║A║2max{║Ax║2:║x║21} ,λ1是AHA的
最大特征值.
∞-范数:║A║∞max{║Ax║∞:║x║∞1}
此外还有Frobenius范数: .它与向量2-范数相容.但非向量范数诱导出的矩阵范数.
四、 矩阵谱半径
定义3.设A是n×n矩阵,λi是其特征值,i1,2,…,n.称
为A的谱半径.
谱半径是矩阵的函数,但非矩阵范数.对任一矩阵范数有如下关系:
ρ(A)≤║A║
因为任一特征对λ,x,Axλx,令X(xx…x),可得AXλX.两边取范数,由矩阵范数的
相容性和齐次性就导出结果.
定理3.矩阵序列I,A,A2,…Ak,…收敛于零的充分必要条件是ρ(A)
a的范数怎么求?
范数:║A║1 max{ ∑|ai1|,∑|ai2|,……,∑|ain| }(列和范数,A每一列元素绝对值之和的最大值),其中∑|ai1|第一列元素绝对值的和∑|ai1||a11| |a21| ... |an1|,其余方法相同);
2-范数:║A║2 A的最大奇异值 (max{ λi(A^H*A) })^{1/2}(其中A^H为A的转置共轭矩阵)