向量数量积的性质和运算律 向量的数量积是怎么推导出来的?

[更新]
·
·
分类:行业
3530 阅读

向量数量积的性质和运算律

向量的数量积是怎么推导出来的?

向量的数量积是怎么推导出来的?

向量的数量积公式推导可以抽象出内积(数量积)的代数刻画,由此可以在纯粹结构的层面推倒出其坐标公式。这样做的好处是可不必依赖于内积的几何定义。
两个向量的数量积等于它们模和夹角余弦的乘积,这是两个向量的数量积的定义,定义是研究问题的出发点,是最初引进的的新概念,不是推导出来的。
就像物理中的功的定义:力f做的功等于力f与物体在力f的方向上走过的位移的乘积一样,

向量数量积坐标运算的原理?

向量数量积坐标运算:等于对应坐标乘积的和

关于向量的数量积怎么算?

已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积。记作a·b。两个向量的数量积等于它们对应坐标的乘积的和。即:若a(x1,y1),b(x2,y2),则a·bx1·x2 y1·y2。
两向量的数量积是数量,投影也是数量。射影是矢量。
运算律:
⑴交换律:a·bb·a
⑵数乘结合律:(λa)·bλ(a·b)a·(λb)
⑶分配律:(a b)·ca·c b·c

向量数量积题型归纳和解题方法?

向量的数量积作为向量的高级运算,是平面向量章节的重要内容,同时它还可以结合三角函数,平面几何和解析几何等知识点进行综合考查,应用范围非常广泛。本文主要介绍五种求解向量数量积的方法:
① 定义法:根据向量数量积的概念,需要已知两个向量的模长和对应的夹角;
② 几何意义:当两个向量共起点,且向量的夹角未知时,可以考虑用数量积的几何意义求解;
③ 坐标表示法:向量的坐标表示主要的优势在于:它可以将复杂的几何问题转换为简单的代数问题,因此当已知的几何图形易于建立直角坐标系时,可以用向量的坐标表示求数量积;
④ 基底法:根据平面向量的基本定理可知,平面内的任意一个向量均可以用两个不共线的向量表示,所以在求解两个向量(至少一个向量未知)的数量积时,可以先将未知向量用已知向量表示,接下来再进行计算就简单多了;
⑤ 极化恒等式:当两个向量共起点,但模长未知时,用极化恒等式来求解两个向量的数量积不妨为一种好的选择。