利用夹逼准则求极限的放缩技巧 高数夹逼准则怎么用?

[更新]
·
·
分类:行业
2575 阅读

利用夹逼准则求极限的放缩技巧

高数夹逼准则怎么用?

高数夹逼准则怎么用?

夹逼准则在求级数极限、函数项极限和多项式极限中有非常大的应用,乃至在以后的数学分析课程中,夹逼准则都是一种首要考虑的数学方法。这里根据初等函数特征,试着总结一下:
1、与不等式的结合使用根据夹逼准则证明和定义可以知道,其构成形式非常灵活,将求极限归结到了不等式的应用中,因此,对于不等式的基本性质,定理一般都是可以应用的,如均次方根定理,最值定理,绝对值不等式定理,排序不等式等等;
2、与放缩法的结合使用放缩法是非常灵活的,往往需要根据题设具体分析和研究,但是也是有规律可循的,例如:根据伯努利方程:(1 p)^n≥1 np,可以对含有n次方的分式进行放缩;利用指数性质x^n可以对多次幂进行放缩;利用三角函数的性质:|sinx|≤1进行转换放缩等等。
3、与泰勒级数的结合使用这种主要针对多项式的夹逼准则应用,将常用的泰勒公式如:e^x,ln(1 x)等在分子或分母中展开,利用相互消去,求得最简式,然后求出极限。
4、与排列组合的结合使用主要是针对带有阶乘的运算式,利用排列组合的公式定义将阶乘转化,然后求极限

夹b定理可以直接使用吗?

是可以直接使用的。
简单的说:函数AgtB,函数BgtC,函数A的极限是X,函数C的极限也是X ,那么函数B的极限就一定是X,这个就是夹逼定理。
英文原名Squeeze Theorem,也称夹逼准则、夹挤定理、挟挤定理、三明治定理,是判定极限存在的两个准则之一。
对于夹逼定理,最基本的放缩手段就是“分母越小,分数越大;分母越大,分数越小”,而对于n项和式放缩的目标,是把分母变成一样的,方便合并,有的题目,处理完分母之后,立刻可以合并,按照求通项法处理,但是有的题目不行,这时候就要考虑使用定积分定义进行求解。

函数极限的六个定义?

1.夹逼定理:(1)当(这是的去心邻域,有个符号打不出)时,有成立
(2),那么,f(x)极限存在,且等于A
不但能证明极限存在,还可以求极限,主要用放缩法。
2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。
在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。
3.柯西收敛准则
数列{Xn}收敛的充分必要条件是:对于任意给定的正数ε,总存在正整数N,使得当mgtN,n gt N时,且m≠n,有。我们把满足该条件的{Xn}称为柯西序列,那么上述定理可表述成:数列{Xn}收敛,当且仅当它是一个柯西序列。