函数项级数一定要连续吗 可导必定连续什么意思?

[更新]
·
·
分类:行业
1331 阅读

函数项级数一定要连续吗

可导必定连续什么意思?

可导必定连续什么意思?

理解:
“可导必连续”:可以导的函数的话,如果确定一点那么就知道之后一点的走向,不会有突变。
“连续不一定可导”:连续不可导的话,像尖的顶点,那一个点是不可导的。
扩展资料:
在数学分析的发展历史上,数学家们一直猜测:连续函数在其定义区间中,至多除去可列个点外都是可导的。也就是说,连续函数的不可导点至多是可列集。
在当时,由于函数的表示手段有限,而仅仅从初等函数或从分段初等函数表示的角度出发去考虑,这个猜想是正确的。
但是随着级数理论的发展,函数表示的手段扩展了,数学家可以通过函数项级数来表示更广泛的函数类。
我们知道,经典几何学研究的对象是规则而光滑的几何图形,但是自然界存在着许多不规则不光滑的几何图形,它们都具有上面所述的“自相似性”。如云彩的边界;山峰的轮廓;
奇形怪状的海岸线;蜿蜒曲折的河流;材料的无规则裂缝,等等。这些变化无穷的曲线,虽然处处连续,但可能处处不可导。
因此“分形几何”自产生起,就得到了数学家们普遍的关注,很快就发展为一门有着广泛应用前景的新的学科。

一致收敛一定可导吗?

可导函数的一致收敛级数不一定可导。例如由外尔斯特拉斯定理知道,在[α,b]上连续的任何函数可表示为一致收敛的多项式级数。
在复分析中有不同的结果:一致收敛的解析函数项级数是解析函数。

函数项级数可导的条件?

函数可导的条件:
1、函数在该点的去心邻域内有定义。
2、函数在该点处的左、右导数都存在。
3、左导数=右导数
注:这与函数在某点处极限存在是类似的。
扩展资料
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),xf(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。
反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。