有理数和实数集的例子 实数是什么举例?

[更新]
·
·
分类:行业
4573 阅读

有理数和实数集的例子

实数是什么举例?

实数是什么举例?

实数由有理数和无理数组成,其中无理数就是无限不循环小数,有理数就包括整数和分数。
有理数例子:如整数(31)、分数(-1/3)
无理数例子:如无线不循环小数(π、3.1565……)
本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
实数的性质:
1、基本运算:
实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。
实数加、减、乘、除(除数不为零)、平方后结果还是实数。
任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
有理数范围内的运算律、运算法则在实数范围内仍适用:
交换律:a bb a , abba
结合律:(a b) ca (b c)
分配律:a(b c)ab ac
2.实数的相反数:
实数的相反数的意义和有理数的相反数的意义相同。
实数只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数。
实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。
3.实数的绝对值:
实数的绝对值的意义和有理数的绝对值的意义相同。一个正实数的绝对值等于它本身;
一个负实数的绝对值等于它的相反数,0的绝对值是0,实数a的绝对值是 :|a|
①a为正数时,|a|a(不变)
②a为0时, |a|0
③a为负数时,|a| a(为a的相反数)
(任何数的绝对值都大于或等于0,因为距离没有负的。)

常用的数集符号:自然数集,正整数集,整数集,有理数集,实数集怎样表示?

1、自然数集 (正整数集)N2、整数集 Z3、有理数集Q4、实数集R5、复数集C

实数集是什么意思?

包含所有有理数和无理数的集合,通常用大写字母R表示。18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。