代数基本定理详细讲解根与系数 d韦达定律?

[更新]
·
·
分类:行业
4681 阅读

代数基本定理详细讲解根与系数

d韦达定律?

d韦达定律?

韦达定理说明了一元二次方程中根和系数之间的关系。
法国数学家弗朗索瓦·韦达在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。

四个关于代数基本定理?

由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。代数学基本定理说明,任何复系数一元 n次多项式方程在复数域上至少有一根(n≥1)。
有时这个定理表述为:任何一个非零的一元n次复系数多项式,都正好有n个复数根。这似乎是一个更强的命题,但实际上是“至少有一个根”的直接结果,因为不断把多项式除以它的线性因子,即可从有一个根推出有n个根。

韦达定理的条件?

韦达定理使用条件是方程必须是一元二次方程,方程必须有实数根。
韦达定理说明了一元二次方程中根和系数之间的关系。韦达定理不仅可以说明一元二次方程根与系数的关系,还可以推广说明一元n次方程根与系数的关系。
法国数学家弗朗索瓦·韦达在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。韦达定理在求根的对称函数,讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用。

n次多项式有n个根为啥?

由代数基本定理知复系数一元n次方程在复数集内必有n个根(包括重根)

为什么齐次线性方程组有n-r个线性无关的解?

n阶齐次线性微分方程的特征方程是一个一元n次方程。根据代数基本定理,任何复系数一元n次多项式
方程在复数域上至少有一根(n≥1),由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。所以:
n阶齐次线性微分方程一定有n个线性无关的解。其通解一定要含有n个解。
对于单重根λm,其通解中出现e^(λmx)。
对于多重根λp(假设为k重根),通解中出现x^j*e^(λpx),j0,1,2,……,k-1。
如果某根λ是复数,可利用欧拉公式化成正余弦的形式。