行列式提取公因式怎么提 对称矩阵的行列式计算技巧?

[更新]
·
·
分类:行业
2693 阅读

行列式提取公因式怎么提

对称矩阵的行列式计算技巧?

对称矩阵的行列式计算技巧?

求特征值时的矩阵因为都含有λ,不太可能化为下三角矩阵。
因为如果用化三角形的方法来解决的话,就涉及到给某行减去一下一行的(4-λ)分之几的倍数,此时你不知道λ是否4。
所以这种变换是不对的,一般都是把某一列或者行划掉2项,剩下一项不为0的且含λ的项,将行列式按列或者按行展开。
扩展资料:
实对称矩阵的行列式计算方法:
1、降阶法
根据行列式的特点,利用行列式性质把某行(列)化成只含一个非零元素,然后按该行(列)展开。展开一次,行列式降低一阶,对于阶数不高的数字行列式本法有效。
2、利用范德蒙行列式
根据行列式的特点,适当变形(利用行列式的性质——如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去,把所求行列式化成已知的或简单的形式。其中范德蒙行列式就是一种。这种变形法是计算行列式最常用的方法。
3、综合法
计算行列式的方法很多,也比较灵活,总的原则是:充分利用所求行列式的特点,运用行列式性质及常用的方法,有时综合运用以上方法可以更简便的求出行列式的值;有时也可用多种方法求出行列式的值

k阶子式的最大公因式与他的行列式有什么关系?

应该是简说,是指首项系数为1(即最高次项系数为1),
最大公因式不唯一,f(x)是最大公因式,那么kf(x)也是最大公因式(k不为零).

行列式求特征值技巧?

1.
直接依据对角线法则,三阶行列式展开共有9项λ多项式的和,问题就转化为一元三次多项式求根的问题。化简之后求根的步骤一般可以借助提公因式求根;公因式不容易看出来的话,这个时候就可以试根(比如det(λE-A)0的所有可能的有理根是常数项的因子,你可以尝试代入一个计算该多项式是否为0,这个过程算得很快的,找到一个根的话问题然后就转化为就是一元二次方程求根了,这个就so easy了)
2.
依据行列式性质,三条性质只用到
某行或某列提出常数公因子
某行或某列的k倍加到另一行或另一列。
如果能换成上下三角行列式那就很好算了--行列式的值直接就是对角元相乘。我们的目的是得到好多的零!
3. 按照某行或者某列展开。可以直接不用化简,直接算三个二阶行列式。
重点是第一条中得到多项式然后求根的问题,第一条对角线法则是通用的,就是写出来的项数最多,化简要细心。推荐搭配行列式的性质多多划出好多零,那就容易多啦。
特别提醒:试根的时候,det(λE-A)0的所有可能的有理根是常数项的因子。注意是有理根哦。对于本科来说A都是定义在R上的,所以这个试根的方法就很有用