极限的局部有界性怎么证明 lim0极限存在吗?

[更新]
·
·
分类:行业
1390 阅读

极限的局部有界性怎么证明

lim0极限存在吗?

lim0极限存在吗?

极限不存在。
分析过程如下:
(1)1/x当x趋于0 时,是正无穷大。
(2)1/x当x趋于0-时,是负无穷大。
(3)故1/x的极限不存在。
函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。
扩展资料:
极限的性质
1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。
2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。
3、和实数运算的相容性:譬如:如果两个数列{xn} ,{yn} 都收敛,那么数列{xn yn}也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。
4、与子列的关系:数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛

什么时候需要同时判断左右极限?

同学你好,一般在验证函数在某点是否连续的时候,需要分别求,或者就是讨论某个带有绝对值符号之类的函数在某点的极限值的时候,是需要分开来求解的,一般常见的就这些。
以上就是关于什么时候需要同时判断左右极限的回答,希望我的回答能够帮助到你

极限的定义关键在于什么?

函数的极限定义是合理运用。
函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。
问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。

函数和数列的极限存在条件一样吗?

从研究的对象看区别
数列是离散型函数。 而函数极限研究的对象主要是具有(哪怕局部具有)连续性的函数。
2、取值方面的区别
数列中的下标n仅取正整数,而对函数而言其自变量x取值为实数。函数极限f(X)与X的取值有关,而数列极限Xn则只是n趋向于无穷是Xn的值。
3、从因变量趋近方式看区别
数列趋近于常数的方式有三种:左趋近,右趋近,跳跃趋近;而函数没有跳跃趋近。
关系
虽然数列极限与函数极限是分别独立定义的,但是两者是有联系的。海涅定理深刻地揭示了变量变化的整体与部分、连续与离散之间的关系,从而给数列极限与函数极限之间架起了一座可以互相沟通的桥梁。
它指出函数极限可化为数列极限,反之亦然。在极限论中海涅定理处于重要地位。有了海涅定理之后,有关函数极限的定理都可借助已知相应的数列极限的定理予以证明。
扩展资料
数列极限和函数极限的性质
1、常用的数列极限的性质:数列极限具有唯一性、有界性、保号性、保不等式性、迫敛性。
2、常用的函数极限的性质:函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等。
在运用以上两条去求函数的极限时尤需注意以下关键之点。
一是先要用单调有界定理证明收敛,然后再求极限值。
二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。
函数极限的一般概念:在自变量的某个变化过程中,如果对应的函数值无限接近于某个确定的数,那么这个确定的数就叫做在这个变化过程中的函数极限。
主要有两种情形:
1. 自变量X任意的接近于有限值X0 或者说趋于有限值X0 对应函数值的变化情形
2. x的绝对值趋于无穷,对应于函数值的变化。
可以把数列看成是自变量为N的函数,数列的极限就是N趋于正无穷时数列收敛的值。可以说是函数极限的一个特殊情况。
而且数列的N取值是正整数,一般函数的X取值是连续的。这样,可以理解,数列具有离散性。而函数,有连续型的,也有离散型的。
说了这么多,不知道你理解没。
数列的极限一般都是指n的变化使得极限值的产生,而n是一个正整数,函数的极限x可以趋向任何值时候的极限,由此可知函数的极限更广泛,比如把数列中的n用x来替换后如果函数存在极限则数列也必定有极限,但是反之不成立。
结论是正确的。但关于函数极限和数列极限之间的关系似乎没有什么定理。
可以认为数列{ f(n) }相当于{ f(x) }的一个子列(正如数列{1,2,...,n}是整个实数轴上所有点所构成的数列之子列),根据数列极限的性质,若n趋于正无穷大时{f(x) }收敛于a,则其子列f(n)也必收敛于a。
你可以发现数列都是以n来表示的,且n都为整数
而函数都是以x来表示的,是连续的
表现在图像上就是数列是无数的点,而函数是一段曲线
在极限上2者没有本质的区别,只是表现形式的不同