单位矩阵基础解系怎么写 什么叫基础解系,怎样求?

[更新]
·
·
分类:行业
1513 阅读

单位矩阵基础解系怎么写

什么叫基础解系,怎样求?

什么叫基础解系,怎样求?

基础解系:齐次线性方程组的解集的极大线性无关组称为该齐次线性方程组的基础解系。
1、对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵;
2、若r(A)rn(未知量的个数),则原方程组仅有零解,即x0,求解结束;若r(A)rltn(未知量的个数),则原方程组有非零解,进行以下步骤:
3、继续将系数矩阵A化为行最简形矩阵,并写出同解方程组;
4、选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系扩展资料:基础解系的性质:基础解系是线性无关的,简单的理解就是能够用它的线性组合表示出该方程组的任意一组解,是针对有无数多组解的方程而言的。基础解系不是唯一的,因个人计算时对自由未知量的取法而异,但不同的基础解系之间必定对应着某种线性关系。基础解系是针对有无数多组解的方程而言,若是齐次线性方程组则应是有效方程的个数少于未知数的个数,若非齐次则应是系数矩阵的秩等于增广矩阵的秩,且都小于未知数的个数。

如果增广矩阵化为阶梯矩阵求基础解系时,最后一行为0 0 0 0 0 0 1那特解怎么求?

按照线性方程组的基本解法
最后一列是非齐次项
如果增广矩阵初等行变换化为阶梯矩阵
最后一行为0000001
那么就是增广矩阵的秩大于系数矩阵的秩
R(A,b)R(A)
显然这个方程组就是无解的

0矩阵的基础解系是什么?

基础解系:齐次线性方程组的解集的极大线性无关组称为该齐次线性方程组的基础解系。
1、对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵;
2、若r(A)rn(未知量的个数),则原方程组仅有零解,即x0,求解结束;若r(A)rn(未知量的个数),则原方程组有非零解,进行以下步骤:
3、继续将系数矩阵A化为行最简形矩阵,并写出同解方程组;
4、选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系扩展资料:基础解系的性质:基础解系是线性无关的,简单的理解就是能够用它的线性组合表示出该方程组的任意一组解,是针对有无数多组解的方程而言的。基础解系不是唯一的,因个人计算时对自由未知量的取法而异,但不同的基础解系之间必定对应着某种线性关系。基础解系是针对有无数多组解的方程而言,若是齐次线性方程组则应是有效方程的个数少于未知数的个数,若非齐次则应是系数矩阵的秩等于增广矩阵的秩,且都小于未知数的个数。