初学三角函数公式的巧妙记忆技巧 三角定理的口诀?

[更新]
·
·
分类:行业
2109 阅读

初学三角函数公式的巧妙记忆技巧

三角定理的口诀?

三角定理的口诀?

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
  同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
  中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
  顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
  变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
  将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
  余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
  计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
  逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
  万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
  1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;
  三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
  利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。

想学三角函数,基础入门级的,怎么学能说的通俗易懂一点吗?从零学习,谢谢?

感谢邀请!
不过很抱歉。俺不懂数学。真不知道。让你失望了。

有空你先把一根木根分两半在两半,把一份慢慢摆起来,先是这样一 一,然后l,加起来=⊥,然后垂直变△,⊥两边放两根!等到了三角形,然后变◇,再变□,然后再正方形上面加I,左边3根,记住,△再⊥里面,◇是△ △=◇,4个△三角=□,然后自己慢慢摸索吧!结论但上+l,右边不加,这时候/=ll,a=b,b-l=c得到底边!如果是在l这边有三个l,l*3-b=C!
剩下的随意变化自己找规律,然后自己摸索写公式,比如l=1厘米,一=1厘米!如果在上50厘米,下5厘,如何计算出来,记住每个1可以分9断,9断里面每个1再分9,这些自己推理,分出来越多,精度越准!

三角函数记忆口诀?

1 三角函数记忆口诀
“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。
以cos(π/2 α)-sinα为例,等式左边cos(π/2 α)中n1,所以右边符号为sinα,把α看成锐角,所以π/2(π/2 α)π,ycosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。
2符号判断口诀
全,S,T,C,正。这五个字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“ ”;第二象限内只有正弦是“ ”,其余全部是“-”;第三象限内只有正切是“ ”,其余全部是“-”;第四象限内只有余弦是“ ”,其余全部是“-”。
也可以这样理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是对应象限三角函数为正值的名称。口诀中未提及的都是负值。
“ASTC”反Z。意即为“all(全部)”、“sin”、“tan”、“cos”按照将字母Z反过来写所占的象限对应的三角函数为正值。
3三角函数顺口溜
三角函数是函数,象限符号坐标注。函数图像单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字一,连结顶点三角形。向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。