解一元二次不等式的几种方法
一元二次不等式只能用因式分解解吗?
一元二次不等式只能用因式分解解吗?
不止因式分解法这一种解法的。一元二次不等式解法还有配方法、图像法、数轴穿根这几种常见的方法。
数轴穿根步骤:把二次项系数变成正的;画数轴,在数轴上从小到大依次标出所有根;从右上角开始,一上一下依次穿过不等式的根,奇过偶不过。
图像法:一元二次不等式也可通过一元二次函数图象进行求解。通过看图象可知,二次函数图象与X轴的两个交点,然后根据题中所需求0或0而推出答案。
求一元二次不等式的解集实际上是将这个一元二次不等式的所有项移到不等式一侧并进行因式分解分类讨论求出解集。解一元二次不等式,可将一元二次方程不等式转化成二次函数的形式,求出函数与X轴的交点,将一元二次不等式,二次函数,一元二次方程联系起来,并利用图象法进行解题,使得问题简化。
一元二次不等式解题步骤?
第一步,如果二次项系数小于零,两边同乘以-1,变成二次项系数大于零,
第二步,解出对应的一元二次方程的根,x1,x2, x1≤x2
第三步,根据大于取两边,小于取中间,得出不等式解集。
一元二次不等式的解集公式法?
1、对不等式变形,使一端为0且二次项系数大于0,即ax2+bx+c>0(a>0),ax2+bx+c<0(a>0);
2、计算相应的判别式;
3、当Δ≥0时,求出相应的一元二次方程的根;
4、根据对应二次函数的图象,写出不等式的解集;
5、解含参数的一元二次不等式可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏。
一元二次不等式过程怎么写?
解一元二次不等式可以用配方法比较简单:首先将方程二次项系数a化为1,然后把常数项移到等号的右边,最后后在等号两边同时加上一次项系数绝对值一半的平方。
公式法可以解所有的一元二次方程,公式法不能解没有实数根的方程(也就是b2-4ac0的方程)。求根公式:x-b±√(b^2-4ac)/2a。
数轴穿根解一元二次不等式步骤:
1)把二次项系数变成正的;
2)画数轴,在数轴上从小到大依次标出所有根;
3)从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含X的项是奇次幂就穿过,偶次幂就跨过);
4)注意看看题中不等号有没有等号,没有的话还要注意舍去使不等式为0的根。
一元二次不等式也可通过一元二次函数图象进行求解:通过看图象可知,二次函数图象与X轴的两个交点,然后根据题中所需求0或0而推出答案。
求一元二次不等式的解集实际上是将这个一元二次不等式的所有项移到不等式一侧并进行因式分解分类讨论求出解集。
解一元二次不等式,可将一元二次方程不等式转化成二次函数的形式,求出函数与X轴的交点,将一元二次不等式,二次函数,一元二次方程联系起来,并利用图象法进行解题,使得问题简化。