数字经济对国际贸易影响图表 如何撰写学位论文之十:表格、图表及文字说明?

[更新]
·
·
分类:互联网
4547 阅读

数字经济对国际贸易影响图表

如何撰写学位论文之十:表格、图表及文字说明?

如何撰写学位论文之十:表格、图表及文字说明?

用图、表及说明的目的是为了在语境中帮助讨论和解释信息,因此,所有的说明材料必须有用,如果你觉得它们还有一定的使用价值,就把它们放在附录中,但必须清晰、易懂。
1.表格和图表:在任何论文中,从统计学的角度对表格收集的数据进行分析能起到相当重要的辅助作用。每当读者看到这些数字,读者就会发现它们对理解文本起到参考的价值。包括附录在内的所有图表都必须按逻辑顺序用阿拉伯数字进行编号。每个表格上有文字说明来陈述表格的内容,说明文字通常用大写字母放在表号的下面。(详情请参阅第十章)对表格进行布局时,我们应以整洁及便于理解为指导原则。如果表格中的内容也需要脚注的话,就把它们放在表格底线下面,不要放在有其它文本注释的页底。如果表格只有一个脚注,那么就用星号,脚注用单倍行距,而与其它词条之间用双倍行距。如果表格过长、一页装不下时,就用“ TABLE---continued ”字样放在表格线上的中间部位,表格标题没必要再重复,尽可能把表格放在一页内。图表和表格一样,在帮助文本说明问题时很有用,把数字排在图表中可以让读者读起来方便、清晰、简明、易懂。但要注意,用图片时必须附有文字说明。2.文字说明:除了以上提到的图表需用文字说明外,一些蓝图、图片、表格、原始绘画、地图、照片等任何用于说明文本的东西都需说明。文字说明的应用规范和图表的相同,它们应该尽可能地与文本内容紧密相连,并且对解释问题起到一定的作用。并非所有的论文都需图表、表格及说明,使用时必须谨慎,因为过多地使用或使用不当都会削弱论文的整体效果而起不到加强的作用。你必须始终记住你的主要目的,你的研究是展示一种学术讨论,如有必要使用图片帮助读者理解,就可以使用这种辅助手段。

大数据在产业中的应用?

大数据细分应用领域需求与市场分析
制造业需求市场
一、行业信息化建设现状
当前,我国工业正处于转型升级的攻坚时期,国家工信部印发《信息化和工业化深度融合专项行动计划(2013-2018年)》,积极推动信息化和工业化深度融合,国家工信部先后认定16个两化融合试点城市, 各地都取得了显著的成果。上海作为首批8个国家级两化融合试验区之一,连续5年保持全国领先水平。
图表:2016年中国制造行业信息化投资规模统计
数据来源:中研普华
2013年,中国制造业信息化投资达620亿元,略有增长,同比增长率为0.8%。2015年,中国制造业信息化投资规模达到655亿元,同比增长3.4%。但是中国制造业中不同行业、不同规模的企业,信息化建设状况差距很大。石化、钢铁、汽车等行业集中度高企业的信息化建设较好,一些企业已基本具备了与国际同行接近的信息化水平而纺织、轻工等行业,信息化建设水平较低。
随着信息技术的发展以及信息化普及水平的提高,数字技术、网络技术和智能技术日益渗透融入到产品研发、设计、制造的全过程,推动产品生产过程的重大变革。
世界工业化发展正在面临着新的变革,发达国家中德国战略性地提出“工业 4.0”,美国着力打造“工业互联网”,新的动态变化都将影响全球制造业版图,我国制造业亟待转型升级。
二、行业数据量及其特点
制造业的存储数据一般被分为以下几种类型:其一,产品设计数据,这类数据的典型特点是以文件为主,非结构化,共享要求比较高,保存时间也比较长其二,企业生产环节的业务数据,其特点是以数据库等结构化数据为主,这些数据的重要性不言而喻,它们不仅表现企业目前运行的状况,而且为企业进一步发展决策提供有价值的分析其三,生产监控数据,其特点是数据量非常大,对存储空间以及I/O吞吐要求高。制造企业中,企业对数据的记录多停留于两种形态:1、传统的纸笔记录2、Excel电子表格记录。这些操作起来看似简单的数据管理方式,在浪费人力物力的同时,还为企业生产及质量监控埋下了巨大的隐患。而真正挖掘数据背后的价值,更是无从谈起。
三、行业大数据应用需求分析
在制造业的应用中,产、供、销一体化为基本核心外,还有延伸的客户关系管理、供应商信息管理等外延系统,各种海量数据库同时交叉运行,并行服务,用户访问量大,频度高,系统负荷重,而且需要保证数据处理的高实时性,这样信息化才能有效地服务于生产和运营。日常操作及追加资源频繁,是一种复合型的高度动态化应用:数据实时变化频度高,牵扯面广,系统需要形成一个有机的整体随时更新各个状态。
制造型企业的良性运营对信息化的依赖性越来越大,对系统的可靠性、稳定性、安全性和反应速度均提出了很高标准和严格要求:随着企业规模的扩展,信息化应用的规范和普及,对企业网电子数据的使用反映出实时、动态、突发、连续、超高负荷等特点,与生产、销售、供应紧密联结,不容许服务中断甚至反应迟缓。因此硬件设备的性能应体现出较强的先进性、一定的超前性、充分的可靠性及迅捷的反应速度。
四、行业大数据应用场景分析
第一个是在设计环节上。纵观国外能做成百年企业的,都是设计能力超强的公司。设计能力强的企业有个特点,他们会经常到网上去搜用户的反馈,甚至建立一个网上社区,由粉丝参与到设计环节当中,这个时候可以借助大数据的分析能力,将这些反馈快速融入到产品设计当中,推出来的产品才会有消费者买单。而在高端制造业上,需要有设计参数的积累。同样的材料做出来的产品,有的能耐用10年,有的用几年就坏了,这是为什么呢?主要就是原料配比、加工、工艺等的差别,这要依靠很多年的数据积累形成的。鼓励国内制造企业在设计过程中,用大数据的理念,从头到尾捕捉下来,所有的设计人员用数据的眼光去做设计,而不是说产品做不好是其它部门的事,管理水平决定了数据的意识和应用的水平。
第二个环节是生产车间。国内的高端制造业其实信息化程度很高,生产线上的机床基本都是自动化的,从原材料进入车间到成品产生,人甚至都不用干预。每个数控机床就是一部小电脑,一条生产线下来就有几十个质量控制点,只要机器一开每分钟就会产生巨大的数据量。如果在全国有很多工厂,产量比较大的话,这个制造企业本身就是一个标准的大数据应用场景。“大数据对于制造企业来说好像挺高级的,但也不用怕,可以从小的地方开始,先将数据以自己的维度从机器上采集起来,再结合预先建立的模型,就可以逐步形成大数据的应用。通过一个月、半年、一年的积累,就可以分析出质量跟哪些因素相关,以此为依据去改进产品和生产流程。
五、行业大数据应用价值分析
基于工业数据仓库的精准营销管理,依托工行强大的数据仓库平台,建设精准营销管理系统集群,充分运用数据挖掘以及大数据分析等现代化的信息技术手段,就能够通过客户信息的全面采集、高度集成、深度挖掘与高效运用等措施建立“以客户为中心”的精准营销管理体系。
大数据使不同的工业企业构建起了客户营销统一视图,打破信息孤岛,深度挖掘客户需求,实现目标客户精准定位,推进客户分层分类服务。此外,通过搭建智能营销信息服务平台,企业还能实现精准营销信息的智能化、自动化、制度化、流程化管理,推进营销管理模式再造和制度完善,加强与客户之间的沟通和良性互动,提升客户满意度和忠诚度。
想要了解更多关于大数据专业分析请关注中研普华研究报告《2017-2022年中国大数据应用行业全景调研与投资风险预测报告》