函数单调性奇偶性口诀 分段函数的奇偶性口诀?

[更新]
·
·
分类:行业
1543 阅读

函数单调性奇偶性口诀

分段函数的奇偶性口诀?

分段函数的奇偶性口诀?

函数奇偶性的判断口诀:内偶则偶,内奇同外。验证奇偶性的前提:要求函数的定义域必须关于原点对称。
判定奇偶性四种方法:
(1)定义法
用定义来判断函数奇偶性,是主要方法。首先求出函数的定义域,观察验证是否关于原点对称。其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。
(2)用必要条件
具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。
例如,函数y的定义域(-∞,1)∪(1, ∞),定义域关于原点不对称,所以这个函数不具有奇偶性。
(3)用对称性
若f(x)的图象关于原点对称,则f(x)是奇函数。
若f(x)的图象关于y轴对称,则f(x)是偶函数。
(4)用函数运算
如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x) g(x)是奇函数,f(x)g(x)是偶函数。简单地,“奇 奇奇,奇×奇偶”。
类似地,“偶±偶偶,偶×偶偶,奇×偶奇”。
函数奇偶性性质
1、大部分偶函数没有反函数(因为大部分偶函数在整个定义域内非单调函数)。
2、偶函数在定义域内关于y轴对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同。
3、奇±奇奇(可能为既奇又偶函数),偶±偶偶(可能为既奇又偶函数),奇X奇偶,偶X偶偶,奇X偶奇(两函数定义域要关于原点对称).
4、对于F(x)f[g(x)]:
若g(x)是偶函数且f(x)是偶函数,则F[x]是偶函数。
若g(x)是偶函数且f(x)是奇函数,则F[x]是偶函数。
若g(x)是奇函数且f(x)是奇函数,则F[x]是奇函数。
若g(x)是奇函数且f(x)是偶函数,则F[x]是偶函数。
5、奇函数与偶函数的定义域必须关于原点对称。

偶函数单调性公式?

如果f(-x)-f(x),就是奇函数。如果f(-x)f(x),就是偶函数。
奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数)。
偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。
但由单调性不能代表其奇偶性。验证奇偶性的前提要求函数的定义域必须关于原点对称。
概述:
偶函数:若对于定义域内的任意一个x,都有f(-x)f(x),那么f(x)称为偶函数。
奇函数:若对于定义域内的任意一个x,都有f(-x)-f(x),那么f(x)称为奇函数。
定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴成轴对称图形。
f(x)为奇函数《》f(x)的图像关于原点对称点(x,y)→(-x,-y)。
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。