二重积分的几何意义题目详细解析
二重积分求体积知识点?
二重积分求体积知识点?
二重积分的几何意义就是体积,求二重积分实质上就是求体积。其中积分区域就是曲顶柱体的底面积,被积函数就是曲顶柱体的高。高数下册课本第138就有二重积分的几何意义,可以参考看一下。求法大概有三种,直角坐标系下先对x积分再对y积分,或者先对y积分再对x积分,或者用极坐标计算。
1的二重积分几何意义?
定积分的几何意义是曲边梯形的有向面积,物理意义是变速直线运动的路程或变力所做的功。
二重积分的几何意义是曲顶柱体的有向体积,物理意义是加在平面面积上压力(压强可变)。
积分的线性性质:
性质1(积分可加性)函数和(差)的二重积分等于各函数二重积分的和(差)
二重积分范围D怎么确定?
1,确定图形的四个端点,从而知道二重积分整个图形范围的横纵坐标跨度,这个跨度就是积分的上下限,x对应x,y对应y。
2,在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
3,在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,内rsinθ)。
4,为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以ra,即O为圆心r为半径的圆和以θb,O为起点的射容线去无穷分割D,设Δσ就是r到r dr和从θ到θ dθ的小区域。
二重定积分的运算法则?
把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。
计算二重积分的基本思路是简化积分计算思想,即把二重积分尽可能的转化为累次积分。
为此,必须注意:选取适合坐标,是否分域,如何定限。计算二重积分的主要方法有:利用对称性、奇偶性、变量替换、几何意义化简,利用直角坐标或极坐标化为二次积分,利用分域法,交换积分次序等能大大简化二重积分的计算,只要方法选得适当,二重积分的运算量就会小很多。
二重积分的现实(物理)含义:面积×物理量=二重积分值;
举例说明:二重积分的现实(物理)含义:
二重积分计算平面面积,即:面积×1=平面面积;二重积分计算立体体积,即:底面积×高=立体体积;二重积分计算平面薄皮质量,即:面积×面密度=平面薄皮质量。
扩展资料:
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。