数学因式分解秘籍
因式分解怎样的做最简?
因式分解怎样的做最简?
因式分解的最简,是相对的,与构成因式分解的数域有关。
一般原则是:多项式,系数没有公因数,字母没有公因式
比如;a3-b3(a-b)(a2 ab b2)在整数范围内最简了,ab是整数,如果是实数范围,还可以分解,当ab是正实数 的时候,a-b跟下a-跟下b和他们和的乘积
分数因式分解的方法与技巧?
因式分解的方法有:提公因式法,分组分解法,公式法,十字相乘法等
怎样才能学会因式分解?
作为整式变形主要内容的因式分解是解决多项式问题的重要手段.那么如何才能学好因式分解这部分内容呢?笔者以为应注意掌握以下几个问题: 一、正确理解因式分解的意义 把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式. 由此,我们理解因式分解的这一定义应注意以下几点:一是分解因式的结果是几个整式积的形式;二是分解因式的过程是多项式的恒等变形,即等式左边为多项式,右边是几个整式积的形式;三是等式的右边每个因式必须为整式且每个因式的次数都低于原来的多项式的次数;四是分解因式必须分解到右边的每个因式不能再分解为止. 二、知道因式分解与整式乘法的区别与联系 分解因式与整式乘法是两个互逆变形过程.整式乘法是把几个整式相乘化成一个多项式,结果是单项式的和;而因式分解是把一个多项式化为几个整式积的形式,结果是乘积的形式. 三、掌握提取公因式法分解因式的基本方法 提公因式法的定义:如果一个多项式的各项含有公因式,那么就把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫提公因式法.提公因式法的理论依据是乘法的分配律,其实质是乘法的分配律的逆用.公因式的定义:多项式各项都含有的相同因式叫做这个多项式的公因式. 确定公因式的方法:确定一个多项式的公因式时,需对数字系数和字母分别进行考虑.即①对于系数:如果各项系数都是整数时,取各项系数的最大公约数作为公因式的系数;②对于字母:取各项相同的字母;③对于字母指数:取各相同字母的指数取其次数最低的.
因式分解的所有方法的步骤?
分解一般步骤:1、如果多项式的首项为负,应先提取负号;这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。口诀:先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。
扩展资料:因式分解主要有十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法等方法,求根公因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法式法,换元法,长除法,短除法,除法等。原则:1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。2、分解因式的结果必须是以乘积的形式表示。3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止;5、结果的多项式首项一般为正。 在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;6、括号内的首项系数一般为正;7、如有单项式和多项式相乘,应把单项式提到多项式前。如(b c)a要写成a(b c);8、考试时在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数。口诀:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。