高斯消元法解齐次线性方程组例子
齐线性方程计算方法?
齐线性方程计算方法?
对于齐次线性方程,只要考虑系数矩阵A。
如果矩阵A是方阵,即方程个数与未知元个数相等时,可以用克莱姆法则,求行列式|A|的值,如果等于0,有无穷多解;如果不等于0,只有唯一零解。
不管矩阵A是不是方阵,都可以用高斯消元法解。
高斯消元法的本质是行变换,是化矩阵A为梯形矩阵。
当矩阵A的秩小于未知元个数时,就存在基础解系。
说白了,无论系数矩阵A的行数与列数之间存在任何关系,都可以用行变换,即高斯消元法求解或基础解系,
只有A是方阵时,才可用克莱姆法则判断解的情况。
LU分解法优缺点?
高斯消去法lu分解法的优点:高斯消元法的算法复杂度是O(n3);这就是说,如果系数矩阵的是n × n,那么高斯消元法所需要的计算量大约与n3成比例,高斯消元法可用在任何域中。
高斯消去法lu分解法的缺点:高斯消元法对于一些矩阵来说是稳定的。对于普遍的矩阵来说,高斯消元法在应用上通常也是稳定的,不过亦有例外。高斯消去法是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。
列主元Gauss消去法的优缺点是什么?
Gauss消去法:高斯消去法优点|:高斯消元法的算法复杂度是O(n3);这就是说,如果系数矩阵的是n × n,那么高斯消元法所需要的计算量大约与n3成比例。高斯消元法可用在任何域中。
缺点:高斯消元法对于一些矩阵来说是稳定的。对于普遍的矩阵来说,高斯消元法在应用上通常也是稳定的,不过亦有例外。高斯消去法(高斯消元法,英语:Gaussian Elimination)是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。
当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。高斯消元法可以用在电脑中来解决数千条等式及未知数。
该方法以数学家高斯命名,但最早出现于中国古籍《九章算术》,成书于约公元前150年
矩阵的逆阵?
初等行变换不影响线性方程组的解,也可用于高斯消元法,用于逐渐将系数矩阵化为标准形。初等行变换不改变矩阵的核(故不改变解集),但改变了矩阵的像。反过来,初等列变换没有改变像却改变了核。
求法:运用初等行变换法。将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵B(A,I])对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。
逆矩阵的性质:
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1(A-1)T (转置的逆等于逆的转置)。
5、若矩阵A可逆,则矩阵A满足消去律。即ABO(或BAO),则BO,ABAC(或BACA),则BC。
6、两个可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。