如何证明速率和浓度的关系
增大反应物浓度,化学反应速率一定加快。这句话对不对?为什么?
增大反应物浓度,化学反应速率一定加快。这句话对不对?为什么?
化学反应速率是衡量化学反应进行快慢的尺度。影响化学反应速率的因素有内因和外因,在其他条件不变时,增加反应的浓度可以增大化学反应的速率,减小反应物的浓度可以降低化学反应的速率,但是,改变固体或者纯液体的量对化学反应速率无影响,但固体表面积会影响化学反应速率,因为当固体或者纯液体参加反应时,反应速率只和接触面积、扩散速度大小有关,所以增大接触面积或增大扩散速率均可提高反应的速率。
化学反应原理,关于浓度对反应速率的影响?
这个问题实际上还涉及其他因素,首先可以确定的是浓度是在变的。浓度下降造成化学反应速率的影响,在化学反应中,理论上是所有反应都会发生,即生成二氧化氮、一氧化氮、氧化二氮。首先要知道,在敞开体系中一氧化氮会很迅速与氧气反应成二氧化氮。那么在一开始硝酸浓度较高的时候,反应生成的二氧化氮以及一氧化氮都会快速溢出,但是生成的氧化二氮无色无味并不能很好确定是否有产物生成。然后硝酸浓度逐渐下降,浓度不足以生成二氧化氮(热力学(氧化还原电势)以及动力学问题)但浓度依然满足生成一氧化氮,所以主要产物变成了一氧化氮,以此类推,氧化二氮也是一样的。本身化学反应就不是单一进行的,由热力学以及动力学共同决定化学平衡以及反应速率。
并不是浓度高反应速率就一定快,动力学问题不是高中的化学反应速率里所提及的。所以高中的反应速率没办法解释这个问题。
动力学研究需要实验证明,所以实际上可以通过实验检验初始一浓度反应时反应产物体系有所有产物则可证明是多种反应同时发生。
判断化学反应速率压强公式?
化学反应进行的快慢程度,用单位时间反应物浓度的减少或生成物浓度的增加来表示.
表达式:△v(A)△c(A)/△t
单位:mol/(L·s)或mol/(L·min)
影响化学反应速率的因素:温度,浓度,压强,催化剂.
另外,x射线,γ射线,固体物质的表面积,与反应物的接触面积,反应物的浓度也会影响化学反应速率.
化学反应的计算公式:
对于下列反应:
mA nBpC qD
有v(A):v(B):v(C):v(D)m:n:p:q
对于没有达到化学平衡状态的可逆反应:
v(正)≠v(逆)
影响化学反应速率的因素:
压强:
对于有气体参与的化学反应,其他条件不变时(除体积),增大压强,即体积减小,反应物浓度增大,单位体积内活化分子数增多,单位时间内有效碰撞次数增多,反应速率加快;反之则减小.若体积不变,加压(加入不参加此化学反应的气体)反应速率就不变.因为浓度不变,单位体积内活化分子数就不变.但在体积不变的情况下,加入反应物,同样是加压,增加反应物浓度,速率也会增加.
温度:
只要升高温度,反应物分子获得能量,使一部分原来能量较低分子变成活化分子,增加了活化分子的百分数,使得有效碰撞次数增多,故反应速率加大(主要原因).当然,由于温度升高,使分子运动速率加快,单位时间内反应物分子碰撞次数增多反应也会相应加快(次要原因)
催化剂:
使用正催化剂能够降低反应所需的能量,使更多的反应物分子成为活化分子,大大提高了单位体积内反应物分子的百分数,从而成千上万倍地增大了反应物速率.负催化剂则反之.
浓度:
当其它条件一致下,增加反应物浓度就增加了单位体积的活化分子的数目,从而增加有效碰撞,反应速率增加,但活化分子百分数是不变的 .
其他因素:
增大一定量固体的表面积(如粉碎),可增大反应速率,光照一般也可增大某些反应的速率;此外,超声波、电磁波、溶剂等对反应速率也有影响.
溶剂对反应速度的影响
在均相反应中,溶液的反应远比气相反应多得多(有人粗略估计有90%以上均相反应是在溶液中进行的).但研究溶液中反应的动力学要考虑溶剂分子所起的物理的或化学的影响,另外在溶液中有离子参加的反应常常是瞬间完成的,这也造成了观测动力学数据的困难.最简单的情况是溶剂仅引起介质作用的情况.
在溶液中起反应的分子要通过扩散穿周围的溶剂分子之后,才能彼此接触,反应后生成物分子也要穿国周围的溶剂分子通过扩散而离开.
扩散——就是对周围溶剂分子的反复挤撞,从微观角度,可以把周围溶剂分子看成是形成了一个笼,而反应分子则处于笼中.分子在笼中持续时间比气体分子互相碰撞的持续时间大10-100倍,这相当于它在笼中可以经历反复的多次碰撞.
笼效应——就是指反应分子在溶剂分子形成的笼中进行多次的碰撞(或振动).这种连续反复碰撞则称为一次偶遇,所以溶剂分子的存在虽然限制了反应分子作远距离的移动,减少了与远距离分子的碰撞机会,但却增加了近距离分子的重复碰撞.总的碰撞频率并未减低.
据粗略估计,在水溶液中,对于一对无相互作用的分子,在依次偶遇中它们在笼中的时间约为10-12-10-11s,在这段时间内大约要进行100-1000次的碰撞.然后偶尔有机
会跃出这个笼子,扩散到别处,又进入另一个笼中.可见溶液中分子的碰撞与气体中分子的碰撞不同,后者的碰撞是连续进行的,而前者则是分批进行的,一次偶遇相当于一批碰撞,它包含着多次的碰撞.而就单位时间内的总碰撞次数而论,大致相同,不会有商量级上的变化.所以溶剂的存在不会使活化分子减少.A和B发生反应必须通过扩散进入同一笼中,反应物分子通过溶剂分子所构成的笼所需要的活化能一般不会超过20kJ·mol-1,而分子碰撞进行反应的活化能一般子40 -400kJ·mol-1之间.
由于扩散作用的活化能小得多,所以扩散作用一般不会影响反应的速率.但也有不少反应它的活化能很小,例如自由基的复合反应,水溶液中的离子反应等.则反应速率取决于分子的扩散速度,即与它在笼中时间成正比.
从以上的讨论可以看出,如果溶剂分子与反应分子没有显著的作用,则一般说来碰撞理论对溶液中的反应也是适用的,并且对于同一反应无论在气相中或在溶液中进行,其概率因素P和活化能都大体具有同样的数量级,因而反应速率也大体相同.但是也有一些反应,溶剂对反应有显著的影响.例如某些平行反应,常可借助溶剂的选择使得其中一种反应的速率变得较快,使某种产品的数量增多.
溶剂对反应速率的影响是一个极其复杂的问题,一般说来:
(1)溶剂的介电常数对于有离子参加的反应有影响.因为溶剂的介电常数越大,离子间的引力越弱,所以介电常数比较大的溶剂常不利与离子间的化合反应.
(2)溶剂的极性对反应速率的影响.如果生成物的极性比反应物大,则在极性溶剂中反应速率比较大;反之,如反应物的极性比生成物大,则在极性溶剂中的反应速率必变小.
(3)溶剂化的影响,一般说来.作用物与生成物在溶液中都能或多或少的形成溶剂化物.这些溶剂化物若与任一种反应分子生成不稳定的中间化合物而使活化能降低,则可以使反应速率加快.如果溶剂分子与作用物生成比较稳定的化合物,则一般常能使活化能增高,而减慢反应速率.如果活化络合物溶剂化后的能量降低,因而降低了活化能,就会使反应速率加快.
(4)离子强度的影响(也称为原盐效应).在稀溶液中如果作用物都是电解质,则反应的速率与溶液的离子强度有关.也就是说第三种电解质的存在对于反应速率有影响.