示波器的采样频率与带宽有何关系 宽带示波器的采样方法有哪些?

[更新]
·
·
分类:互联网
1233 阅读

示波器的采样频率与带宽有何关系

宽带示波器的采样方法有哪些?

宽带示波器的采样方法有哪些?

在使用电子测量仪器的时候,波形查看是最常用到的功能,那么波形的采集和重构一般是怎样实现呢?在采集方法上比较典型的仪器之一就是示波器,今天安泰测试就简单介绍一下瞬态、稳态测量仪器常见的波形采集方法。
根据Nyquist (奈奎斯特)采样定理,能够完成的重建波形采样频率至少应为信号最高频率的2倍,而当示波器最大采样率超过测量信号频率2倍的时候, 示波器一次“扫描”中采集远远足够的样点,构建准确的图像,这就是数字示波器常用采集方法——实时采样。实时采样是使用示波器捕获快速信号、单次信号、瞬态信号的唯一方式。
当采样过程不满足Nyquist (奈奎斯特)采样定理,就可以考虑使用另一种采集方法——等效采样。 等效采样的基本原理是把高频、快速信号变成低频、慢速重复信号进行采集。为了达到低速采样还原高频信号的目的,要求被测信号一定是周期变化的,如果将每个采样点安排在不同信号周期内,取自波形不同的位置上,而不是在同一个周期的话,就可以大大降低采样频率。最后通过数学方法再将多个周期内的采样点还原到一个周期内,重构被测信号。
这样等效采样可以使用低于原始信号两倍频率的采样频率不失真的采样并还原原始信号,适合于对高频周期信号的采样和分析。如在测量高频信号时,采样率不够时则不能在一次扫描中搜集足够的样点。可以使用等效时间采样,准确地采集频率超过采集率/2.5的信号。等效时间采样通过从每次重复中捕获少量信息,构建重复信号的图像,波形缓慢构建,象一串灯一样,一个接一个地亮起。示波器可以准确地捕获频率成分远远高于示波器采样率的信号。
等效采样有可以分为顺序等效采样和随机等效采样。
顺序等效采样是在间隔K个周期捕获一个样值,每经过k个周期再经过一个微小的延时△t就获得一个样值。假设k=1时,每周期采样N个点的等效采样和重构过程。最后将采集的数据拼凑到一个周期内,实现对原始输入信号波形的重构。重构后的采样频率变为微小延时△t的倒数。通过控制这个△t的大小,就可以控制等效采样的频率。实际采样频率可以通过控制K的大小进行调节。K越大,实际采样频率越小;而△t越小,等效采样频率越高。这样就实现了低速采样高频信号的目的。
顺序等效采样
随机等效采样采用内部的时钟, 它与输入信号和信号触发的时钟不同步, 样值连续不断的获得, 而且独立于触发位置。通过记录采样数据与触发位置的时间差来确定采样点在信号中的位置来重建波形。这就产生了准确测量与采样触发点相关的位置的问题。尽管采样在时间上是连续的, 但是相对于触发器则是随机的, 由此产生了“ 随机”等效时间采样的说法。

使用示波器时,参数设置对了,可是波形没能触发出来是什么原因呢?

  波形示波器屏幕上左右移动原因:
1.触发电平调的过高或者过低。
2.信号没有触发。请检查下触发电平是不是设置到信号有效幅度范围内。
3.输入信号频率大于示波器采样率的一半(如果你使用的是数字示波器的话),这种情况属于欠采样,采到的是假波,也无法得到稳定的波形。需要调节往小时基档位,直到采样率大于信号频率的2倍为止。  示波器时间轴(横轴)采样频率与你的正弦波信号频率不是整数倍关系,所以在时间刷新上不同步,造成移动。如果信号波形显示不稳定,可以调节触发模式。常见的触发模式有电平、边沿、宽度等,可以用边沿触发,然后调节触发电平的高低,直到波形稳定。  示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。