三角形内切圆的半径公式怎么推导 直角三角形内切圆半径长公式如何推导?急急急?

[更新]
·
·
分类:行业
2358 阅读

三角形内切圆的半径公式怎么推导

直角三角形内切圆半径长公式如何推导?急急急?

直角三角形内切圆半径长公式如何推导?急急急?

直角三角形的内切圆半径公式:r(a b-c)/2
设Rt△ABC中,∠C=90度,BC=a,AC=b,AB=c   
结论是:内切圆半径r=(a+b-c)/2   
证明方法一般有两种:   
方法一:   
设内切圆圆心为O,三个切点为D、E、F,连接OD、OE   
显然有OD⊥AC,OE⊥BC,OD=OE   所以四边形CDOE是正方形   
所以CD=CE=r   所以AD=b-r,BE=a-r,   
因为AD=AF,CE=CF   所以AF=b-r,CF=a-r   
因为AF+CF=AB=r   所以b-r+a-r=r   内切圆半径r=(a+b-c)/2   
即内切圆直径L=a+b-c   
方法二:   
设内切圆圆心为O,三个切点为D、E、F,连接OD、OE、OF,OA、OB、OC   
显然有OD⊥AC,OE⊥BC,OF⊥AB   所以S△ABC=S△OAC+S△OBC+S△OAB   
所以ab/2=br/2+ar/2+cr/2   
所以r=ab/(a+b+c)   =ab(a+b-c)/(a+b+c)(a+b-c)   =ab(a+b-c)/[(a+b)^2-c^2]   
因为a^2+b^2=c^2   所以内切圆半径r=(a+b-c)/2   即内切圆直径L=a+b-c
一般三角形内切圆半径为r2S/(a b c),S是三角形的面积公式。
公式推导
首先画一个三角形以及三角形的内接圆,分别连接圆心和三角形三个顶点(这时可见三角形分为了三个三角形),再分别连接圆心和三个切点(这时可见三角形分为六个个小三角形),可得这三条线段分别与三角形三条边a、b、c垂直,这时三角形面积可以用三个小三角形来求,
既a*r/2 b*r/2 c*r/2(a b c)*r/2S 所以r2S/(a b c)
拓展资料
与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形三条角平分线的交点
三角形一定有内切圆,其他的图形不一定有内切圆(一般情况下,n边形无内切圆,但也有例外,如对边之和相等的四边形有内切圆。),且内切圆圆心定在三角形内部。
在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。
内切圆的半径为r2S÷C,当中S表示三角形的面积,C表示三角形的周长。
面积法;1/2lr(l周长)用于任意三角形
若以三角形的内切圆为反演圆进行反演,则三角形的三条边和外接圆会分别变为半径相等的四个圆(半径都等于内切圆半径的一半)。

三角形内切圆的半径公式是什么?

三角形内切圆半径公式:r2S/(a b c)。
推导:设内切圆半径为r,圆心O,连接OA、OB、OC,得到三个三角形OAB、OBC、OAC。
那么,这三个三角形的边AB、BC、AC上的高均为内切圆半径r。
所以:SS△ABCS△OAB S△OBC S△OAC
(1/2)AB*r (1/2)BC*r (1/2)*AC*r
(1/2)(AB BC AC)*r
(1/2)(a b c)*r
所以,r2S/(a b c)。
三角形内切圆性质
(1)在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。
(2)正多边形必然有内切圆,而且其内切圆的圆心和外接圆的圆心重合,都在正多边形的中心。
(3)常见辅助线:过圆心作垂直