参数是参考值的意思吗
求:标准差与标准误有什么联系?
求:标准差与标准误有什么联系?
标准差和标准误都是变异指标,但它们之间有区别,也有联系。区别:
①概念不同;标准差是描述观察值(个体值)之间的变异程度;标准误是描述样本均数的抽样误差;
②用途不同;标准差常用于表示变量值对均数波动的大小,与均数结合估计参考值范围,计算变异系数,计算标准误等。标准误常用于表示样本统计量(样本均数,样本率)对总体参数(总体均数,总体率)的波动情况,用于估计参数的可信区间,进行假设检验等。
③它们与样本含量的关系不同: 当样本含量 n 足够大时,标准差趋向稳定;而标准误随n的增大而减小,甚至趋于0 。联系: 标准差,标准误均为变异指标,如果把样本均数看作一个变量值,则样本均数的标准误可称为样本均数的标准差;当样本含量不变时,标准误与标准差成正比;两者均可与均数结合运用,但描述的内容各不相同。
椭圆的参数方程中参数的意义?
在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数xf(t),yφ(t),(1)且对于t的每一个允许值,由方程组(1)所确定的点m(x,y)都在这条曲线上,那么方程组(1)称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数。类似地,也有曲线的极坐标参数方程ρf(t),θg(t)。(2)
圆的参数方程xa rcosθyb rsinθ(a,b)为圆心坐标r为圆半径θ为参数
椭圆的参数方程xacosθybsinθa为长半轴长b为短半轴长θ为参数
双曲线的参数方程xasecθ(正割)ybtanθa为实半轴长b为虚半轴长θ为参数
[1]首先极坐标是个坐标,不是方程.不能说极坐标是参数方程.曲线的直角坐标方程、极坐标方程及参数方程只是曲线的3种表达方式,可以相互转化.
[2]参数方程转化为曲线方程就是找到x、y之间的关系,消去参数.
对于lz所给题目,可见(x/a)开3次方cost,(y/a)开3次方sint.
由cos^2t sin^2t1,易得:(x/a)^(2/3) (y/a)^(2/3)1
[3]参数方程的参数t和极坐标里的θ没有什么必然关系.
θ是在极坐标系里曲线上一点M与极点O连线与极轴之间的夹角.而t是为了表示x、y之间的关系而引入的第三个变量即为“参变量”.
可参考以下内容:
(1)先说曲线方程.
一条曲线可以看做由许多点集合而成。因每一点在平面直角坐标系中都有一对坐标x和y。尽管同一个曲线上各点的坐标x,y不一样,但是每一点的x和y之间的关系却具有共同的规律.这种共同的规律我们可以用一个函数关系式来表示,即为该曲线的曲线方程.例:x^2 y^2a^2.
(2)曲线的参数方程.
曲线方程是y跟x之间的“直接”关系。参数方程不一样,除了x、y两个变量外,再引入第三个变量叫做“参变量”,然后分别写出x、y跟这个参变量之间的关系式.
对于在原点(0,0),半径为a的圆.如果P是这个圆上任意的一点,连接PO,并把PO跟x轴正方向之间的夹角∠POX用t表示.当P点在圆上的位置变化时,t的大小也会跟着变化.这就说明,这个t,也是一个“变量”.而且t跟P点的坐标x、y之间有函数关系.由三角函数的知识,可以分别写出x、y跟t之间的函数关系式(方程):yasint,xacost.
{其中半径a是不变的常量,x、y和t是变量,而且t是“自变量”,x和y都是t的函数。我们把t这种变量叫做“参变量”,把这个方程叫做“圆心在原点的圆的参数方程”.}
在参数方程里,x和y是通过参变量这个“第三者”来接上关系的.
(3)极坐标方程
其跟直角坐标下的曲线方程的意义相类似的.直角坐标系中是用x和y一对坐标来确定点的位置的,直角坐标系中的曲线方程,是曲线上任意一点的坐标y跟x的函数关系式.极坐标系中是用ρ(极径――距离)和θ(极角――方向)这一对“极坐标”来确定点的位置.曲线的极坐标方程是曲线上任意一点的极坐标ρ跟θ的函数关系式.